

www.computer.org/intelligent

Building a Semantic Wiki

Adam Souzis

Vol. 20, No. 5
September/October 2005

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright

holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be

reposted without the explicit permission of the copyright holder.

© 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained

from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.

SEPTEMBER/OCTOBER 2005 1541-1672/05/$20.00 © 2005 IEEE 87
Published by the IEEE Computer Society

Editor: Steffen Staab
University of Koblenz-Landau
staab@uni-koblenz.de

T h e S e m a n t i c W e b

of ideas: from Diderot’s universal encyclopedia in the 18th
century to Vannevar Bush’s Memex at the beginning of the
computer age to Ted Nelson’s Xanadu in the 1970s. How-
ever, the Semantic Web’s development so far has focused
primarily on metadata and carefully designed data struc-
tures. To realize Berners-Lee’s vision, the Semantic Web
must capture and represent content created every day by
people without special training—such content includes
blogs, emails, and discussion groups.

Rhizome (www.liminalzone.org; download at http://
sourceforge.net/projects/rx4rdf) is an experimental, open
source content management framework I’ve created that
can capture and represent informal, human-authored con-
tent in a semantically rich manner. Rhizome aims to help
bring about a new kind of commons—one of ideas. This
commons wouldn’t comprise just a web of interlinked
pages of content, as is the current World Wide Web, but
a web of relationships between the underlying ideas
and distinctions that the content implies: a permanent,
universally accessible interlinking of content based on
imputed semantics such as concepts, definitions, or struc-
tured argumentation.

The challenges
Semantic Web technologies such as RDF provide

a good foundation for creating this kind of network.
RDF’s two most important characteristics are that RDF
resources are globally unique and therefore can be
referenced universally, and that the monotonic semantic
model doesn’t make the closed-world assumption.2 More
specifically, one can always make new statements about
a resource, enabling a decentralized network in which to
safely discover new facts without invalidating previous
conclusions.

However, current Semantic Web technologies fall short

of meeting some of the challenges that informal, human-
authored content presents. Rhizome focuses on addressing
two of these challenges. The first is the ability to handle
ambiguity, inconsistency, and multiple views and perspec-
tives. Related to this, we need ways to model content so
that we can maintain appropriate semantics even as the
content is replicated and altered. The second is Semantic
Web technology’s ease of use. We need to make this tech-
nology dramatically easier to use, for both developers and
end users. Semantic Web technologies are difficult con-
ceptually, even for experienced software developers. It’s
difficult to imagine nontechnical end users effectively
authoring RDF statements without software assistance.
Even for sufficiently trained users, writing the required
precise statements takes much more time and effort than
writing informal text. Thus, these two challenges are inter-
related, because the less we need precise, consistent state-
ments, the easier it is to create semantic content.

The Rhizome application stack lets developers build
Web applications that use familiar technology such as
XML and XSLT (extensible stylesheet language transfor-
mations) but run in an environment where the outside
world (for example, data sources and incoming requests)
is presented as a universe of RDF statements. Rhizome is
designed for applications such as

• a wiki-like application that lets the user create arbitrary
RDF resources and the application logic for presenting
and interacting with them,

• a personal note management and publishing tool for
keeping track of and extracting metadata and user anno-
tations from a variety of local sources such as plain-text
files and comments in source code, and

• a discussion forum in which users can classify and
structure responses with typed annotations instead of
email-like quoting.

Overview
Rhizome consists of a stack of components (see figure

1). The “Architecture” section describes these components
in more detail, but first I’ll start with an overview.

The Semantic Web vision of a “unifying logical lan-

guage that enables concepts to be progressively

linked into a universal Web” (as Tim Berners-Lee put it)1

is part of a long lineage of dreams of a universal repository

Building a Semantic Wiki

Adam Souzis, Liminal Systems

The components
At the top of the stack is Rhizome Wiki, a

wiki-like content management and delivery
system that treats all content, metadata, and
structure as RDF and lets users edit any
RDF resource as they would a wiki page.
Rhizome Wiki uses a couple of custom text
formats to make writing semantic content
easier:

• ZML is a plain-text formatting language
similar to those found in wikis, except
that users can create ad hoc structure and
use special formatting conventions to
indicate semantic intent.

• RxML is a simple, alternative format for
RDF that aims to be as easy to use as an
application properties file. Thus, novices
can author and edit RDF metadata. It’s
specified as XML but designed for author-
ing in ZML.

Rhizome Wiki runs on top of Raccoon, a
simple application server that uses an RDF
model for its data store. Raccoon uses RxPath
to translate arbitrary requests—currently
HTTP, XML-RPC, and command line argu-
ments—to RDF resources. Each of these can
be associated with style sheets in RxSLT and
RxUpdate,3 languages that are subsets of
XSLT and XUpdate.

RxPath is an RDF data access engine that
provides a deterministic mapping between
the RDF abstract syntax and the XPath data
model. This lets users access RDF data stores

as a (virtual) XML DOM (document object
model) and query them using RxPath, a lan-
guage syntactically identical to XPath 1.0.
Building on this are RxSLT and RxUpdate,
languages for transforming and updating
the RDF data store; they are syntactically
identical to XSLT and XUpdate, respectively.
Other XML technologies that rely on XPath
can be easily adopted, such as using Schema-
tron to validate an RDF model.

Rhizome in action
To see how Rhizome uses these various

components, let’s take a look at how a user
creates a page of content using Rhizome
Wiki. Figure 2 shows three different views
of a page created in Rhizome Wiki, illus-
trating how to create structured content
that’s transformed into and stored as RDF.
The page represents a FAQ (frequently
asked questions), a familiar document con-
vention. Rhizome makes it easy to turn
relatively informal document conventions
like FAQs into semantically meaningful
resources—in this case, an RDF resource
for each question-and-answer pair. This
feature helps fulfill the Semantic Web’s
promise: If FAQs were exposed on the Web
this way, building applications that could
aggregate them and provide specialized
interfaces for tasks such as browsing, tag-
ging, and rating would be much easier.

Figure 2a shows the page’s presentation
view, a FAQ with just one question and
answer. Notice that the presentation is spe-

cific to FAQ resources: When users request a
FAQ resource, Rhizome invokes an RxSLT
style sheet to transform the RDF resource
into XHTML. Because RxSLT is syntacti-
cally identical to XSLT, I was able to adopt,
with minimal modifications, an XSLT style
sheet for displaying FAQs from an unrelated
project (Apache Forest, http://forrest.apache.
org). This ability to easily adapt XML tech-
nology is one way Rhizome strives to make
RDF easier to adopt.

Figure 2b shows the same page in edit
mode, revealing that the source isn’t RDF
but ZML. Compared to similar wiki text
formats, ZML has some unique features: It
lets users create ad hoc structural elements
mapped to XML elements or RDF resources
and has syntactic constructs for explicit
semantics such as the metadata annotation
in figure 2b. When a user saves a page of
ZML content, Rhizome Wiki converts the
ZML to RDF before saving the RDF in its
data store. We can see this RDF in figure 2c,
which shows the sample page’s metadata
view. The label “metadata” is a bit mislead-
ing because Rhizome stores everything as
RDF, so, in a sense this is also the data view.
This view displays the RDF using RxML.

The RDF that makes up this page comes
from three sources: the process of convert-
ing the ZML to RDF, called shredding; the
structural properties created by the handler
that handles the “save” action when an edit
is completed; and the user-defined meta-
data. From this view, users can edit any of
this RDF directly, thus enabling them to
change the wiki application’s behavior and
structure. To mitigate the inherent dangers
of this level of openness, Rhizome Wiki
provides fine-grain authorization and vali-
dation alongside the use of contexts.

Architecture
As figure 1 illustrates, Rhizome’s com-

ponents are arranged as a stack in which
higher-level components depend on the
lower-level components, but not vice versa.
We can see how the components are inte-
grated by examining each one from the
bottom to the top of the stack.

RxPath data access
The main motivation for creating RxPath

was to make RDF easier to use, especially
for developers more familiar with XML
than RDF. RxPath does this in two ways.
First, it enables users to apply familiar XML
technologies to RDF models in a straight-

88 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Rhizome Wiki

Presentation layer

RDF shreddingRxMLZML

Raccoon application server

(Web) applications

Other
applications

Other

RxPath data access engine

Interfaces

XML DOMRxUpdateRxSLT Other

SPI (service provider interface)

Data access

P2P lookup (future)Local RDF datastores

Figure 1. The Rhizome architecture stack.

forward way. For example, users can extract
and format content in an RDF model using
a standard XSLT style sheet without relying
on any extension functions or elements.
Users can author and even test and debug
the style sheet with standard XSLT devel-
opment tools. Second, RxPath lets us visu-
alize an RDF model much like a standard
XML DOM, reducing much of the concep-
tual impedance between RDF and XML.
This should reduce RDF’s learning curve
for a developer with competence in XML
and related technologies and therefore con-
tribute to RDF’s widespread adoption.

RxPath maps the set of (subject, predicate,
object) triples in an RDF model into a virtual
and possibly infinitely recursive tree in which

• the root has a child node corresponding
to each resource in the model,

• each resource node has child nodes for
each statement that it’s the subject of, and

• each statement node has a single child
node corresponding to the statement’s
object.

If the object is a resource, it might in turn
have child nodes that correspond to the
statements that the resource is subject of, and
so on. Given such a tree, an XPath expression
such as /foaf:Document/dc:creator/* will select a
set containing all the authors of each docu-
ment resource in the RDF model.

RxPath also supports named graphs4 (also
known as contexts), a common extension to
the RDF model used to partition RDF state-
ments into groups. RxPath uses a unique
approach to contexts by treating them not as
a one-to-one mapping with a subgraph of an
RDF model, but as a collection of subgraphs
composed through union and difference
operators. This enables Rhizome to use con-
texts simultaneously and efficiently to model
many different concepts, such as metadata
versioning, transactions, provenance, appli-
cation partitioning, and personalization (user
customizations). For example, Raccoon’s
transaction log of changes made to the RDF
store is represented as a collection of con-
texts, each of which adds or subtracts from
the previous context. Using contexts lets
Rhizome capture when, where, how, and
by whom a set of statements was made.

Raccoon application server
Raccoon’s goal is to present a uniform

and purely semantic environment for appli-
cations. This enables the creation of applica-

SEPTEMBER/OCTOBER 2005 www.computer.org/intelligent 89

(b)

(c)

(a)

Ad hoc
structural
elements

Metadata
annotation

Hyperlinks

Unordered list

Properties
extracted
from ZML
(“shredding”)

Structural
properties

User-defined
metadata

Figure 2. (a) A sample page created in a fresh installation of Rhizome Wiki.
(b) A screenshot of Rhizome Wiki in edit mode on a page created using ZML.
(c) The metadata view of the sample page showing the underlying RDF.

tions that are easily migrated and distributed
and that are resistant to change. Raccoon is
designed primarily for applications that look
at the world as a universe of RDF state-
ments, but it also works with XML-centric
applications.

Raccoon isn’t designed to be a full-
featured application server and in fact will
often be embedded in another application
server. Raccoon’s job as an application
server is a narrow one—to map a request
to a response, possibly modifying the state
of the application in the process:

Request � Application (Rules � Store)
� Response

A request is a dictionary of simple values,
and an application defines a pipeline of
RxPath expressions that transform the request
into the response. Raccoon presents both the
request and the application’s state using the
RxPath data model. This approach enables
the creation of applications that can be trans-
parently distributed and aggressively cached.
Application code is always executed within
the context of a request. There are external
requests, such as HTTP requests, and internal
ones, such as the requests sent when an appli-
cation starts or stops. Raccoon also provides
basic transaction coordination for managing
updates to the RDF store. Using contexts
enables the application to choose an appropri-
ate consistency model for its needs. If full
global atomic consistency isn’t needed, Rac-
coon can cache request responses even more
aggressively and still provide the appropriate
levels of cache coherency.

To get a sense of how an application
built on Raccoon uses rules to implement
functionality, take a look at the metadata in
figure 2c. In particular, take note of the
following properties:

• wiki:name. When Raccoon receives
a request for a URL, it uses this sub-
property of rdfs:label to find the RDF
resource that corresponds to the URL.
The rule is written in RxPath as
/*[wiki:name=$_path].

• wiki:doctype. After the previous rule
selects the resource, other rules look for
a display handler on the basis of the type
of resource and the requested action. The
rule that invokes the RxSLT resource
that transforms the FAQ resource into
HTML is /*[wiki:handle-doctype= $__resource/
wiki:doctype].

Each rule I’ve discussed is defined in the
application configuration file for Rhizome
Wiki. By simply adding rules and corre-
sponding metadata, we can add sophisticated
functionality. Many Rhizome Wiki features,
such as its release workflow and authoriza-
tion model, are implemented in this manner.

ZML and RxML
A common assumption made about the

Semantic Web is that special software will
assist in authoring content for the Semantic
Web. But until the day this functionality is
built into word processors, text editors, Web
page forms, and all the other places a user
can enter text, this assumption will limit the
Semantic Web’s growth. Instead, Rhizome
follows wiki design principles5 and intro-
duces ZML, a plain-text format with simple
text conventions to guide presentation, thus

allowing users to create content with explicit
semantics anywhere that text can be entered.
Another advantage of using a wiki-like text
format for authoring semantic content is
that, unlike word processor formats or even
HTML with CSS, wiki text formats provide
very limited presentational options. This
limitation makes it hard for naive or undisci-
plined users to express semantics through
presentation (for example, by using text
effects).

However, enabling the authoring of con-
tent with explicit semantics requires signifi-
cant enhancements to existing wiki formats.
First, users must be able to create arbitrary
structures. To this end, users can use ZML as
a simple, concise alternative syntax for XML,
enabling them to author any XML construct.
In fact, the result of parsing ZML is XML.

One advantage of this approach is that it
lets arbitrary HTML or XML be converted to

ZML again, enabling roundtrip conversions.
For example, users can write content in ZML,
edit it in a WYSIWYG HTML editor, or process
it by some specialized tools that consume
XML, and then view it as ZML again.

On the other hand, ZML provides no
intrinsic translation to RDF—instead, Rhi-
zome Wiki maps the resulting XML using
rule-based shredding, which I’ll describe in a
moment. Several reasons for this exist. First,
current standardized ontology languages,
such as OWL, aren’t yet powerful enough to
infer equivalencies between a generic RDF
representation and its appropriate domain-
specific ontology. Second, the most intuitive
markup structure for a particular applica-
tion doesn’t always submit to a straightfor-
ward mapping to RDF; shredding gives us
flexibility to handle these cases.

Finally, there’s the pragmatic issue:Always
representing all structural elements as RDF
creates a tremendous volume of RDF state-
ments, especially if order is preserved. Creat-
ing this mass of RDF statements would also
open heretofore unexplored (by Rhizome)
questions of composition: how to reason
about, present, modify, and reintegrate
resources that are parts of a larger resource.

ZML needs special syntax to make it easy
to explicitly express semantic intent. One
requirement is the ability to create metadata
annotations of both content and structural
elements (for example, section headers or list
items). We also need formatting rules that can
express semantic distinctions that are elided
in current wiki text formats. For example,
we must distinguish between creating a ref-
erence to a WikiName (which, in the case of
Rhizome Wiki, is an RDF resource’s name)
and creating a hyperlink, which has explicit
presentational intent and generally implies
a relationship between the content and the
link target. Similarly, we must distinguish
between anchors and their common use as a
way to name document sections.

Figure 2b includes an example of ZML
that illustrates some of these features, de-
monstrating the syntax for creating struc-
tural elements (transformed to XML ele-
ments), unordered lists, hyperlinks, and
metadata annotation.

Rhizome Wiki also uses RxML (see fig-
ure 2c). Although RxML can express any
set of RDF statements, it presents the RDF
in a constrained, simplified manner: a list
of resource URIs, each of which has a set
of property name-value pairs. Its goal is to
let novices read and edit RDF metadata

90 www.computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Rhizome uses a novel architecture

to enable a unique approach for

addressing some of the challenges

of creating semantically explicit

content, but many more

challenges exist.

using a structure conceptually similar to
and only incrementally more complicated
than application properties’ file formats
such as Microsoft Windows’ .ini files.

Rhizome Wiki
Rhizome Wiki offers all the basic wiki

functionality, such as letting users create and
edit pages on an ad hoc basis, along with
some more advanced content management
features such as roles and groups, release
workflow, and basic facet navigation.

Almost all of Rhizome’s functionality is
implemented in its dynamic pages, which
are written in RxSLT, XSLT, and RxUp-
date. Users can edit these like any other
pages, making it easy to incrementally add
and change functionality. They can also
use RxUpdate to migrate the underlying
schema at runtime. This flexibility makes
access control very important—to this end,
Rhizome uses a flexible schema for autho-
rizing both application-level actions and
statement-level changes to the RDF store.

One factor limiting the Semantic Web’s
growth is the reliance on generic formats for
representing RDF. Although RxML tries to
mitigate this (especially compared with the
complexity of the W3C’s standard XML rep-
resentation of RDF), it’s unrealistic to expect
the vast installed base of applications to be
enhanced to support RDF anytime soon. Rhi-
zome’s approach to this issue is shredding, or
providing a framework for extracting RDF
statements from a variety of content formats.

Rhizome lets users create rules that trig-
ger shredding on the basis of the content’s
type. For example, shredding an RDF/XML
document would consist of parsing the
RDF; shredding an HTML document with
a GRDDL (Gleaning Resource Descriptions
from Dialects of Languages)6 link would
consist of invoking the referenced XSLT
script; and shredding an MP3 file would
consist of extracting the metadata out of the
embedded ID3 tag. Using contexts, Rhi-
zome can retain the relationships between
an instance of content and statements ex-
tracted from it, enabling it to know, for
example, that the statements might be out of
date when content has changed.

For instance, when the user saves the
ZML in figure 2b, shredding occurs, result-
ing in the RDF in figure 2c. A shredder can
be associated with content types, and shred-
ding is recursive. So, in this case, the first
shredder invoked was for ZML, and it sim-
ply parsed the ZML to XML and invoked

the XML shredder. The generic XML
shredder is an XSLT style sheet that recur-
sively invokes shredders specific to an
XML namespace. Finally, the shredder
associated with the FAQ XML namespace
is an RxUpdate script that for each FAQ
element adds an RDF resource to the store
on the basis of a specific FAQ ontology.

Peer-to-peer future
A “commons” implies shared resources,

equally available to all. If we think con-
cretely about how to build the commons of
ideas I mentioned in the introduction, we
realize it must be built on a robust, decen-
tralized, peer-to-peer infrastructure. One
possible architecture could look like this:

• All (public) RDF statements are stored
in a global distributed store and are ac-
cessed through the RxPath processor
through next-generation, distributed
hash tables such as PGrid.7

• Application files are stored in a peer-to-
peer content distribution network such as
Coral.8 Unlike a typical CDN, the nodes
would have Raccoon-like processors that
would actively process the content using
the global RDF store. During processing,
the cached results would also be added to
the CDN.

Several of Rhizome’s design elements
support this type of architecture:

• Raccoon presents a purely semantic
view of the environment that enables
applications to be independent of their
physical environment.

• Raccoon’s rules-based approach makes
it easer to distribute and cache applica-
tion processing.

• RxPath’s path-based query model can use
peer-to-peer lookup primitives more eas-
ily than tuple-based query languages such
as SQL (Structured Query Language) or
SPARQL (Query Language for RDF).

• RxPath’s use of contexts lets applica-
tions choose a consistency model appro-
priate for a decentralized, distributed
environment (contexts also enable state-
ments to be clustered for efficient dis-
tributed querying).

Rhizome’s implementation is freely
available, open source, and implemented in

Python. Although it’s fully functional, it’s
still very much in an experimental state.
Rhizome uses a novel architecture to enable
a unique approach for addressing some
of the challenges of creating semantically
explicit content, but many more challenges
exist. Some of the more difficult ones in-
clude the stability of names, the composi-
tion of resources, change management, and
conflict resolution. These challenges will
shape Rhizome’s future development.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila,
“The Semantic Web,” Scientific Am., May
2001, pp. 28–37.

2, P. Hayes, RDF Semantics, World Wide Web
Consortium (W3C) recommendation, Feb.
2004; www.w3.org/TR/rdf-mt.

3. A. Laux and L. Martin, XUpdate—XML
Update Language, XUpdate Working Group
specification, 14 Sept. 2000; http://xmldb-
org.sourceforge.net/xupdate/xupdate-
wd.html.

4. J. Carroll et al., “Named Graphs, Provenance
and Trust,” Proc. 14th Int’l Conf. World Wide
Web (WWW 05), ACM Press, 2005, pp.
613–622.

5. W. Cunningham, Wiki Design Principles,
http://c2.com/cgi/wiki?WikiDesignPrinciples.

6. D. Hazael-Massieux and D. Connolly, Glean-
ing Resource Descriptions from Dialects of
Languages (GRDDL), World Wide Web Con-
sortium (W3C) note, 13 Apr. 2004, www.
w3.org/TR/2004/NOTE-grddl-20040413.

7. K. Aberer et al., “GridVine: Building Inter-
net-Scale Semantic Overlay Networks,” Proc.
3rd Int’l Semantic Web Conf. (ISWC 04),
LNCS 3298, Springer, 2004, pp. 107–121.

8. M.J. Freedman, E. Freudenthal, and D. Maz-
ières, “Democratizing Content Publication
with Coral,” Proc. 1st Symp. Networked Sys-
tems Design and Implementation (NSDI 04),
Usenix Assoc., 2004, pp. 239–252.

SEPTEMBER/OCTOBER 2005 www.computer.org/intelligent 91

Adam Souzis is
founder of Liminal
Systems. Contact
him at asouzis@
users.sourceforge.
net.

